23 research outputs found

    Cumulative Space in Black-White Pebbling and Resolution

    Get PDF

    The Power of Negative Reasoning

    Get PDF
    Semialgebraic proof systems have been studied extensively in proof complexity since the late 1990s to understand the power of Gröbner basis computations, linear and semidefinite programming hierarchies, and other methods. Such proof systems are defined alternately with only the original variables of the problem and with special formal variables for positive and negative literals, but there seems to have been no study how these different definitions affect the power of the proof systems. We show for Nullstellensatz, polynomial calculus, Sherali-Adams, and sums-of-squares that adding formal variables for negative literals makes the proof systems exponentially stronger, with respect to the number of terms in the proofs. These separations are witnessed by CNF formulas that are easy for resolution, which establishes that polynomial calculus, Sherali-Adams, and sums-of-squares cannot efficiently simulate resolution without having access to variables for negative literals

    Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling

    Get PDF
    We establish an exactly tight relation between reversible pebblings of graphs and Nullstellensatz refutations of pebbling formulas, showing that a graph G can be reversibly pebbled in time t and space s if and only if there is a Nullstellensatz refutation of the pebbling formula over G in size t+1 and degree s (independently of the field in which the Nullstellensatz refutation is made). We use this correspondence to prove a number of strong size-degree trade-offs for Nullstellensatz, which to the best of our knowledge are the first such results for this proof system

    Exponential Resolution Lower Bounds for Weak Pigeonhole Principle and Perfect Matching Formulas over Sparse Graphs

    Get PDF
    We show exponential lower bounds on resolution proof length for pigeonhole principle (PHP) formulas and perfect matching formulas over highly unbalanced, sparse expander graphs, thus answering the challenge to establish strong lower bounds in the regime between balanced constant-degree expanders as in [Ben-Sasson and Wigderson '01] and highly unbalanced, dense graphs as in [Raz '04] and [Razborov '03, '04]. We obtain our results by revisiting Razborov's pseudo-width method for PHP formulas over dense graphs and extending it to sparse graphs. This further demonstrates the power of the pseudo-width method, and we believe it could potentially be useful for attacking also other longstanding open problems for resolution and other proof systems

    Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling

    Full text link
    We establish an exactly tight relation between reversible pebblings of graphs and Nullstellensatz refutations of pebbling formulas, showing that a graph GG can be reversibly pebbled in time tt and space ss if and only if there is a Nullstellensatz refutation of the pebbling formula over GG in size t+1t+1 and degree ss (independently of the field in which the Nullstellensatz refutation is made). We use this correspondence to prove a number of strong size-degree trade-offs for Nullstellensatz, which to the best of our knowledge are the first such results for this proof system

    KRW Composition Theorems via Lifting

    Full text link
    One of the major open problems in complexity theory is proving super-logarithmic lower bounds on the depth of circuits (i.e., P⊈NC1\mathbf{P}\not\subseteq\mathbf{NC}^1). Karchmer, Raz, and Wigderson (Computational Complexity 5(3/4), 1995) suggested to approach this problem by proving that depth complexity behaves "as expected" with respect to the composition of functions f⋄gf\diamond g. They showed that the validity of this conjecture would imply that P⊈NC1\mathbf{P}\not\subseteq\mathbf{NC}^1. Several works have made progress toward resolving this conjecture by proving special cases. In particular, these works proved the KRW conjecture for every outer function ff, but only for few inner functions gg. Thus, it is an important challenge to prove the KRW conjecture for a wider range of inner functions. In this work, we extend significantly the range of inner functions that can be handled. First, we consider the monotone\textit{monotone} version of the KRW conjecture. We prove it for every monotone inner function gg whose depth complexity can be lower bounded via a query-to-communication lifting theorem. This allows us to handle several new and well-studied functions such as the s-ts\textbf{-}t-connectivity, clique, and generation functions. In order to carry this progress back to the non-monotone\textit{non-monotone} setting, we introduce a new notion of semi-monotone\textit{semi-monotone} composition, which combines the non-monotone complexity of the outer function ff with the monotone complexity of the inner function gg. In this setting, we prove the KRW conjecture for a similar selection of inner functions gg, but only for a specific choice of the outer function ff

    LIPIcs

    Get PDF
    We study space complexity and time-space trade-offs with a focus not on peak memory usage but on overall memory consumption throughout the computation. Such a cumulative space measure was introduced for the computational model of parallel black pebbling by [Alwen and Serbinenko ’15] as a tool for obtaining results in cryptography. We consider instead the non- deterministic black-white pebble game and prove optimal cumulative space lower bounds and trade-offs, where in order to minimize pebbling time the space has to remain large during a significant fraction of the pebbling. We also initiate the study of cumulative space in proof complexity, an area where other space complexity measures have been extensively studied during the last 10–15 years. Using and extending the connection between proof complexity and pebble games in [Ben-Sasson and Nordström ’08, ’11] we obtain several strong cumulative space results for (even parallel versions of) the resolution proof system, and outline some possible future directions of study of this, in our opinion, natural and interesting space measure

    Lifting with Simple Gadgets and Applications to Circuit and Proof Complexity

    Full text link
    We significantly strengthen and generalize the theorem lifting Nullstellensatz degree to monotone span program size by Pitassi and Robere (2018) so that it works for any gadget with high enough rank, in particular, for useful gadgets such as equality and greater-than. We apply our generalized theorem to solve two open problems: * We present the first result that demonstrates a separation in proof power for cutting planes with unbounded versus polynomially bounded coefficients. Specifically, we exhibit CNF formulas that can be refuted in quadratic length and constant line space in cutting planes with unbounded coefficients, but for which there are no refutations in subexponential length and subpolynomial line space if coefficients are restricted to be of polynomial magnitude. * We give the first explicit separation between monotone Boolean formulas and monotone real formulas. Specifically, we give an explicit family of functions that can be computed with monotone real formulas of nearly linear size but require monotone Boolean formulas of exponential size. Previously only a non-explicit separation was known. An important technical ingredient, which may be of independent interest, is that we show that the Nullstellensatz degree of refuting the pebbling formula over a DAG G over any field coincides exactly with the reversible pebbling price of G. In particular, this implies that the standard decision tree complexity and the parity decision tree complexity of the corresponding falsified clause search problem are equal
    corecore